Exercise 39

(a) Use the definition of a derivative to find $f^{\prime}(2)$, where $f(x)=x^{3}-2 x$.
(b) Find an equation of the tangent line to the curve $y=x^{3}-2 x$ at the point $(2,4)$.
(c) Illustrate part (b) by graphing the curve and the tangent line on the same screen.

Solution

To determine $f^{\prime}(2)$, use the definition of the derivative to determine $f^{\prime}(x)$ and then set $x=2$ in the result.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-2(x+h)\right]-\left(x^{3}-2 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-2 x-2 h\right]-x^{3}+2 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-2 h}{h} \\
& =\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}-2\right) \\
& =3 x^{2}-2
\end{aligned}
$$

Therefore,

$$
f^{\prime}(2)=3(2)^{2}-2=10 .
$$

Use the point-slope formula to obtain the equation of the line with this slope that passes through the point $(2,4)$.

$$
\begin{gathered}
y-4=10(x-2) \\
y-4=10 x-20 \\
y=10 x-16
\end{gathered}
$$

Plot both the curve and the tangent line on the same graph. Notice that the line touches the curve at $x=2$.

