## Exercise 39

- (a) Use the definition of a derivative to find f'(2), where  $f(x) = x^3 2x$ .
- (b) Find an equation of the tangent line to the curve  $y = x^3 2x$  at the point (2, 4).
- (c) Illustrate part (b) by graphing the curve and the tangent line on the same screen.

## Solution

To determine f'(2), use the definition of the derivative to determine f'(x) and then set x = 2 in the result.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{[(x+h)^3 - 2(x+h)] - (x^3 - 2x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{[(x^3 + 3x^2h + 3xh^2 + h^3) - 2x - 2h] - x^3 + 2x}{h}$$
  
= 
$$\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 2h}{h}$$
  
= 
$$\lim_{h \to 0} (3x^2 + 3xh + h^2 - 2)$$
  
= 
$$3x^2 - 2$$

Therefore,

$$f'(2) = 3(2)^2 - 2 = 10.$$

Use the point-slope formula to obtain the equation of the line with this slope that passes through the point (2, 4).

$$y - 4 = 10(x - 2)$$
  
 $y - 4 = 10x - 20$   
 $y = 10x - 16$ 

Plot both the curve and the tangent line on the same graph. Notice that the line touches the curve at x = 2.

